Superheavy dark matter from thermal inflation
نویسندگان
چکیده
منابع مشابه
Superheavy Dark Matter from Thermal Inflation
It is quite plausible that the mass of the dark matter particle increases significantly after its freeze-out, due to a scalar field rolling to large values. We describe a realization of this scenario in the context of thermal inflation which naturally gives a cold dark matter particle with the correct cosmological abundance and a mass around 10 GeV, evading the conventional upper bound of 10 Ge...
متن کاملSuperheavy Dark Matter and Thermal Inflation
The thermal inflation is the most plausible mechanism that solves the cosmological moduli problem naturally. We discuss relic abundance of superheavy particle X in the presence of the thermal inflation assuming that its lifetime is longer than the age of the universe, and show that the long-lived particle X of mass 1012–1014 GeV may form a part of the dark matter in the present universe in a wi...
متن کاملInfrared Hierarchy, Thermal Brane Inflation and Superstrings as Superheavy Dark Matter
In theories with TeV scale quantum gravity the standard model particles live on a brane propagating in large extra dimensions. Branes may be stabilized at large (sub-millimeter) distances from each other, either due to weak Van der Waals type interactions, or due to an infrared analog of Witten’s inverse hierarchy scenario. In particular, this infrared stabilization may be responsible for a lar...
متن کاملSuperheavy dark matter
We show that, contrary to the standard lore, dark matter may be superheavy (many orders of magnitude larger than the weak scale). We show that massive particles may be produced naturally during the transition from the inflationary phase to either a matter-dominated or radiation-dominated phase as a result of the expansion of the background spacetime acting on vacuum quantum fluctuations of the ...
متن کاملSuperheavy Dark Matter A
In the standard dark matter scenarios, WIMPs are usually considered to have once been in local thermodynamic equilibrium (LTE), and their present abundance is determined by their self-annihilation cross section. In that case, unitarity and the lower bound on the age of the universe constrains the mass of the relic to be less than 500 TeV. 1 On the other hand, if the DM particles never attained ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 1999
ISSN: 0556-2821,1089-4918
DOI: 10.1103/physrevd.60.023518